WNE Linear Algebra Final Exam Series A

2 February 2023

Please use separate sheets for different problems. Please use single sheet for all questions. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

Problems

Problem 1.

Let V = lin((1, 1, 4), (2, 1, 6), (1, 2, 6)) be a subspace of \mathbb{R}^3 .

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) for which $t \in \mathbb{R}$ does the vector v = (-1, 1, t) belong to V? for all such $t \in \mathbb{R}$ find coordinates of v relative to basis \mathcal{A} .

Problem 2.

Let $V \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

- a) find a basis and the dimension of the subspace V,
- b) for which $t \in \mathbb{R}$ is the subspace V contained in the subspace W_t , i.e. $V \subset W_t$, where

$$W_t = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 + 8x_3 + tx_4 = 0 \}?$$

Problem 3.

Let

$$A = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 1 & 1 & 3 & 2 \\ 3 & 4 & 3 & 2 \\ 3 & 5 & 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 4 & 7 \\ 0 & 0 & 3 & 5 \\ 4 & 5 & 0 & 0 \\ 3 & 4 & 0 & 0 \end{bmatrix}.$$

a) compute $\det A$,

b) compute $det(AB^{\intercal}AB)$.

Problem 4.

Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear endomorphism given by the formula

$$\varphi((x_1, x_2)) = (2x_2, -4x_1 + 6x_2).$$

a) find the eigenvalues of φ and bases of the corresponding eigenspaces. Find a basis \mathcal{A} of \mathbb{R}^2 consisting of eigenvectors of φ .

b) find the matrix $M(\varphi \circ \varphi)_{st}^{\mathcal{A}}$.

Problem 5.

Let $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 - x_2 + x_3 = 0\}$ be a subspace of \mathbb{R}^3 .

- a) find an orthonormal basis of V,
- b) compute the orthogonal projection of w = (5, 1, 2) onto V.

Problem 6.

Consider the following linear programming problem $x_1 - x_3 \rightarrow \min$ in the standard form with constraints

- $\begin{cases} -x_1 + 2x_2 x_3 + x_4 = 10\\ 2x_1 + x_2 + 2x_3 + 3x_4 = 15 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 4.$
- a) which of the sets $\mathcal{B}_1 = \{1, 3\}$, $\mathcal{B}_2 = \{1, 2\}$, $\mathcal{B}_3 = \{1, 4\}$ is basic feasible? Write the corresponding basic solution for all basic sets,
- b) solve the linear programming problem using simplex method.

Questions

Question 1.

Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ be an endomorphism given by the formula

$$\varphi((x_1, x_2)) = (4x_1 + tx_2, x_1 + 2x_2).$$

For which $t \in \mathbb{R}$ is vector v = (1, 1) an eigenvector of φ ? Find the corresponding eigenvalue.

Question 2.

Let $A \in M(n \times n; \mathbb{R})$ be a diagonalizable matrix. If $C^{-1}AC = D$ is a diagonal matrix for some invertible matrix $C \in M(n \times n; \mathbb{R})$, does it follow that columns of $(C^{\intercal})^{-1}$ are eigenvectors of matrix A^{\intercal} ?

Question 3.

If $A \in M(2 \times 2; \mathbb{R})$ is an antisymmetric matrix, i.e. $A^{\intercal} = -A$, and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the unit matrix, does it follow that matrix A - I is invertible?

Question 4.

Matrix $M(P_V)_{st}^{st} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{bmatrix}$ is a matrix of an orthogonal projection P_V onto some subspace $V \subset \mathbb{R}^2$. Find an orthonormal basis of V^{\perp} .

Question 5.

Vectors (1, 1) and (1, 3) are (some) solutions of a system of linear equations in two variables. Given that (0, 0) is not a solution, find an example of a third solution of that system different from the two others.