Please use separate sheets for different problems. Please use single sheet for all questions. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

Problems

Problem 1.

Let $V=\operatorname{lin}((1,1,4),(2,1,6),(1,2,6))$ be a subspace of \mathbb{R}^{3}.
a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) for which $t \in \mathbb{R}$ does the vector $v=(-1,1, t)$ belong to V ? for all such $t \in \mathbb{R}$ find coordinates of v relative to basis \mathcal{A}.

Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+10 x_{3}+2 x_{4}=0 \\
2 x_{1}+3 x_{2}+18 x_{3}+5 x_{4}=0 \\
x_{1}+6 x_{2}+18 x_{3}-2 x_{4}=0
\end{array}\right.
$$

a) find a basis and the dimension of the subspace V,
b) for which $t \in \mathbb{R}$ is the subspace V contained in the subspace W_{t}, i.e. $V \subset W_{t}$, where

$$
W_{t}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}+x_{2}+8 x_{3}+t x_{4}=0\right\} ?
$$

Problem 3.

Let

$$
A=\left[\begin{array}{llll}
4 & 1 & 1 & 1 \\
1 & 1 & 3 & 2 \\
3 & 4 & 3 & 2 \\
3 & 5 & 3 & 2
\end{array}\right], \quad B=\left[\begin{array}{llll}
0 & 0 & 4 & 7 \\
0 & 0 & 3 & 5 \\
4 & 5 & 0 & 0 \\
3 & 4 & 0 & 0
\end{array}\right]
$$

a) compute $\operatorname{det} A$,
b) compute $\operatorname{det}\left(A B^{\top} A B\right)$.

Problem 4.

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(2 x_{2},-4 x_{1}+6 x_{2}\right)
$$

a) find the eigenvalues of φ and bases of the corresponding eigenspaces.

Find a basis \mathcal{A} of \mathbb{R}^{2} consisting of eigenvectors of φ.
b) find the matrix $M(\varphi \circ \varphi)_{s t}^{\mathcal{A}}$.

Problem 5.

Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V,
b) compute the orthogonal projection of $w=(5,1,2)$ onto V.

Problem 6.

Consider the following linear programming problem $x_{1}-x_{3} \rightarrow$ min in the standard form with constraints
$\left\{\begin{array}{r}-x_{1}+2 x_{2}-x_{3}+x_{4}=10 \\ 2 x_{1}+x_{2}+2 x_{3}+3 x_{4}=15\end{array}\right.$ and $x_{i} \geqslant 0$ for $i=1, \ldots, 4$.
a) which of the sets $\mathcal{B}_{1}=\{1,3\}, \mathcal{B}_{2}=\{1,2\}, \mathcal{B}_{3}=\{1,4\}$ is basic feasible?

Write the corresponding basic solution for all basic sets,
b) solve the linear programming problem using simplex method.

Questions

Question 1.

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(4 x_{1}+t x_{2}, x_{1}+2 x_{2}\right)
$$

For which $t \in \mathbb{R}$ is vector $v=(1,1)$ an eigenvector of φ ? Find the corresponding eigenvalue.

Question 2.

Let $A \in M(n \times n ; \mathbb{R})$ be a diagonalizable matrix. If $C^{-1} A C=D$ is a diagonal matrix for some invertible matrix $C \in M(n \times n ; \mathbb{R})$, does it follow that columns of $\left(C^{\top}\right)^{-1}$ are eigenvectors of matrix A^{\top} ?

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ is an antisymmetric matrix, i.e. $A^{\top}=-A$, and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the unit matrix, does it follow that matrix $A-I$ is invertible?

Question 4.

Matrix $M\left(P_{V}\right)_{s t}^{s t}=\left[\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5}\end{array}\right]$ is a matrix of an orthogonal projection P_{V} onto some subspace $V \subset \mathbb{R}^{2}$. Find an orthonormal basis of V^{\perp}.

Question 5.

Vectors $(1,1)$ and $(1,3)$ are (some) solutions of a system of linear equations in two variables. Given that $(0,0)$ is not a solution, find an example of a third solution of that system different from the two others.

